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Abstract—Contaminants containing different chemicals will pass through different hydro geologic zones as they migrate 

through the soil to the water table. The water table is the upper surface of the groundwater system. The pore space between 

soil particles above the water table are occupied by both air and water. Flow in this unsaturated zone is taken to be vertically 

downward, as liquid contaminants or solutions of contaminants and precipitation move under the force of gravity. The upper 

most region of the soil, the unsaturated zone, is the site of important process leading to pollutant attenuation. 

 In responding to the growing concern over deteriorating groundwater quality, groundwater flow models are rapidly 

coming to play a crucial role in the development of protection and rehabilitation strategies. These models provide forecasts of 

the future state of the groundwater aquifer systems. 

 The objective of the present work is to demonstrate how mass transport, flow of pollutants and other technologies 

can be applied to define the behaviour of pollutants in the unsaturated and saturated soil zones. The present study is 

concerned with the development of analytical models for unsaturated and saturated flow behaviour in soils. 

Index Terms — Contaminants , water table, groundwater, flow, pollutants, aquifer, analytical models .   

——————————      —————————— 

 

1 INTRODUCTION 
The increasing demand for water for domestic, 

industrial and agricultural purposes is placing 

greater emphasis on the development of ground 

water resources. The exploitation of ground 

water resources at some parts of the country 

induces degradation of groundwater quality as 

well as the discharge of untreated effluents 

which add contaminants to the groundwater 

system. In recent years considerable interest and 

attention have been directed to dispersion 

phenomenon in flow through porous media.  

         The solutions of one, two and three-

dimensional deterministic advection-dispersion 

equation have been investigated in numerous 

publications before and are still actively studied. 

[4] and its cited references there have 

documented many previously derived analytical 

solutions with different initial and boundary 

conditions. [2] have developed an analytical  

solutions of contaminant transport from one, 

two, three-dimensional finite sources in a finite-

thickness aquifer using Green's function method. 

For simulating most field problems, the 

mathematical benefits of obtaining an exact 

analytical are probably out weighted by errors 

introduced by simplifying approximations of the 

complex field environment that are required to 

apply the analytical approach ([1] ,[3],[5]).  

        Not many analytical solutions are available 

for two and three-dimensional problems even 

through the numerical solutions exist. In spite of 

difficulties in obtaining solution for two and 

three-dimensional cases, in the present study, we 

have developed a mathematical model for one-

dimensional flow assuming linear retardation, a 

zero order sink/source term, a first-order 

production/decay term, and using first and third 

type boundary conditions at the inlet. The 

governing partial  differential equations are by 

applying  Laplace transforms with respect to z 

and t; Fourier transforms with respect to x and y 

for a Cartesian coordinate system. The solute 

concentration in the real space and time domain 

is obtained by solving the ensuing algebraic 

equation and applying appropriate inverse 

integral transforms.  
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2 MATHEMATICAL FORMULATION  
 We consider one-dimensional 

unsteady flow through the semi-infinite 

unsaturated porous media in the x-z plane in the 

presence of a toxic material. The uniform flow is 

in the z-direction. The medium is assumed to be 

isotropic and homogeneous so that all physical 

quantities are assumed to be constant. Initially 

the concentration of strength 
0

C   exists at the 

surface. The velocity of the groundwater is 

assumed to be constant. With these assumptions 

the basic equation governing the flow is 
C C C S

D
t z z z t






     
   

     

                       (1) 

where C is the constituent concentration  in the 

soil solution, t is the time, S is the adsorbed 

constituent concentration, D is the 

hydrodynamic dispersion coefficient, z is the 

depth,  is the average pore-water velocity,  is 

the soil water content fraction and   is the bulk 

density of soil. 

 The first term on the right hand side 

of equation (1) represents the change in 

concentration due to hydrodynamic dispersion 

while the second term gives the effect of 

advective transport and the last term represents 

source/sink term i.e., chemical reaction or 

radioactive decay. The physical system assumes 

constant application of a Leachate constituent of 

concentration 
0

C  to the soil surface or large 

sources of wastes in a landfill that release a given 

constituent to the soil water system at a 

concentration.The third term on the right hand 

side of equation (1) represents adsorption.An 

equilibrium adsorption state will be assumed 

with a linear relationship between solution and 

adsorbed phases and this can be expressed as 

 
S K C

d


  
(2) 

Where K
d

 is the partition or distribution 

coefficient. The distribution coefficient is 

expressed as the ratio of solute concentration on 

the adsorbent to solute aqueous concentration at 

equilibrium.  

Differentiating equation (2) with respect to time 

and substituting it into (1) and rearranging, we 

get 

Where  1R K
d


   is called the 

coefficient of retardation. When no adsorption 

occurs ( K
d

= 0) the relation factor R reduces to 

unity. Then the advection-dispersion equation (3) 

can be written as 
2

2

C C C
D

t zz


  
 

     

 (4) 

 Equation (4) with its auxiliary 

conditions is an appropriate mathematical model 

of the physical problem. The problem is solved 

when a unique C(z,t) is found that satisfies 

equation (4) and its auxiliary conditions. There 

are several well-known analytical and numerical 

methods for solving the mathematical model. 

However, an alternative formulation of the 

problem is possible with the aid of the calculus of 

variations. An extremum problem replaces the 

given differential equation. A functional is found 

such that the extremum function also satisfies the 

given differential equation and its auxiliary 

conditions. A necessary condition that an 

extremum function exists is that the function 

satisfies the Euler equation. In practice the 

natural boundary conditions of the problem are 

only approximately satisfied with no loss in the 

validity of the solution. 

 Initially saturated flow of fluid of 

concentration C = 0, takes place in the medium. 

At t = 0, the concentration of the plane source is 

instantaneously changed to C = C 0 Then the 

initial and boundary conditions for a semi-

infinite column and for a step input are
      ,0 0 : 0, 0, : 0, , 0 : 0

0
C z z C t C t C t t      

       
(5) 

 

    The physical meaning of the boundary 

conditions corresponds to a situation where a 

soluble constituent in leachate is continually 

supplied to the soil surfaces which do not
 contain the material initially. The chemical 

process represents irreversible adsorption
 precipitation and/or changes in the chemical 

state of the constituent being described.  

 Equation (5) is a concentration type 

initial and boundary condition. However, use of 

a different boundary condition, such as a flux-

type boundary condition should have little effect 

on the final results. For uniform soils, value of
2

2

C C C
R D

t zz


  
 

     

(3)  
value of hydrodynamic dispersion coefficient D 

and average velocity   may be estimated by 

matching values of the relative concentration 

measured at specific depths as a function of time. 
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For layered soil, values for D and   may be 

estimated by matching observed concentration 

vs time distributions at specific soil depths with 

those obtained for a numerical model which 

allow for depth dependent values of D,  and 
.To reduce equation (4) to a more familiar form, 

we take 

   
2

, , exp
2 4

z t
C z t z t

D D

  
   

             

(6)  

Substitution of equation (6) reduced equation (4) 

to Fick's law of diffusion equation 

2

2
D

t z

  


         

 (7) 

The above initial and boundary conditions (5) 

transform to 

     
2

00, exp : 0, ,0 0 : 0, , 0 : 0
4

t
t C t z z t t

D

 
          

   

 

        (8) 

 It is thus required that equation (7) 

can be solved for a time dependent influx of fluid 

at z=0. The solution of equation (7) can be 

obtained by using Duhamel's theorem. 

 If C=F(x,y,z,t) is the solution of 

differential equation for semi-infinite media in 

which the initial concentration is zero and its 

surface is maintained at concentration unity, then 

the solution of the problem in which the surface 

is maintained at temperature  t   is 

   , , ,
0

t
C F x y z t d

t
   


 


     

(9) 

This theorem is used principally for heat 

conduction problem, but the above has been 

specified to fit this specific case of interest. 

 Let us consider the problem in which 

the initial concentration is zero and the boundary 

is maintained at concentration unity. the 

boundary conditions are 

 

     ,0 0 : 0, 0, 1: 0, , 0 : 0z z t t t t         
  

      
(10)    

 This problem can be solved by the 

application of the Laplace transform. The 

concentration  which is a function of t and 

whatever space coordinates, say z, t, occur in the 

problem. We write 

    , ( , ) ,
0

pt
L z t z p e z t dt

 
    

    

(11) 

where p is a number whose real part is positive 

and large enough to make the integral (4) 

convergent.  

 By applying Laplace transformation 

(11) to equation (7), that is, multiplied by e-pt and 

integrate with respect to t from 0 to ∞.Then the 

partial differential equation (7) is reduced to the 

ordinary differential equation below. The 

equation for   derived in this way we shall 

always refer to as the 'subsidiary equation'. 

When the subsidiary equation has been solved 

with the boundary conditions, the Laplace 

transform  of the solution of the problem is 

known. Before proceeding to the method of 

finding   from   it may be remarked that 

more general differential equation and more 

general boundary conditions lead in precisely the 

same way to an ordinary differential equation 

with boundary conditions at a and b, and hence 

to the value of  . 

 If there is more one space variable, for 

example, if the general differential equation 

0
12 





tD      
(12) 

has to be solved in some region with initial and 

boundary conditions then the subsidiary 

equation will be 

2

2

d p

Ddz


 

      

(13) 

The solution of equation can be written as 
qz qz

Ae Be
 

    

where 
D

p
q   

 The boundary condition as z   

requires that B=0 and boundary conditions at z=0 

requires that A=1/p, thus the particular solution 

of the Laplace transform equation is  

qze
p


1

 

                                                      (14) 

 If the transformation   does not 

appear in the table, we determine   from   by 

the use of the Inversion theorem for the Laplace 

transformation. This states that 

   dkke
i

t

i

i

kt 







2

1

 

 (15) 

Where   is to be large that all the singularities of 

 (k) lie to the left of the line ( i   , i   ).  

k is written in place of p in equation (13) to 

emphasise the fact that in equation (15) we are 

considering the behaviour of   regarded as a 

function of a complex variable, while in the 
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previous discussion p need not have been 

complex at all. Then the inversion of the above 

function is given by the table of Laplace 

transform .Equation (14) can be written in the 

form of Complementary Error Function (erfc). 

The error function to the probability integral is 

defined as  

 
22

0

z
erf z e d







     (16)    

 This integral arises in the solution of 

certain partial differential equations of applied 

mathematics and occupies an important position 

in the probability theory. The complementary 

error function erfc(z) is defined as 

 





z

dezerfzerfc 


 22
)(1)(  (17) 

then the equation (15) can be written in the form 

of complimentary error function,then the above 

result will be 

 

22
1

2
2

z
erf e d

zDt
Dt






  
     

 
  

    

(18) 

By using Duhamel's theorem, the solution of the 

problem with initial concentration zero and the 

time dependent surface condition at z=0 is 

     dtzF
t

t

 





0

,    (19) 

Where 

 

22
( , )

2

z t e d
z

D t


 




 
   



 (20) 

Since 
2

e


 is a continuous function, it is 

possible to differentiate under the integral, which 

gives  

 

222
exp

3 4 ( )
22 ( )2

z z
e d

zt D t
D tD t





 

  
  

   
 

                                                                               (21)

    

The solution to the problem is  

2
( )exp

34 ( )2 0 2( )

tz z d
t

D tD
t







 
   

        

(22) 

putting 

)(2 





tD

z

      

 (23) 

then the equation(21) can be written as 

2 22

24
2

z
t e d

z D
Dt


 

 

  
   
 
 

               

(24) 

By taking boundary condition as,











D

t
Ct

4
exp)(

2

0


  the particular solution of 

the problem can be written as 

 

2 22 20 exp exp
24

2

C t
d

zD
Dt

 
 

 

   
      

      
 

      (25) 

  

Then the above equation can be written by 

changing the integral limits as 

 
2 2 22 2 20, exp exp exp

2 24 0 0

C w t
z t d d

D

 
   

  

       
             

            

     (26)   

      

Evaluation of the Integral Solution 

The integration of the first term of the equation 

(25) gives  

 







 2

0

2

2
2

2
exp 











 ed

              

(27)    

For convenience the second integral can be 

expressed in terms of error function, because this 

function is well tabulated. 

Noting that 















 22

22

2

2
2 



















 
                                                                              (28)

 

        

The second integral of equation can be written as 

 
















































































 

























de

de

dI

0

2

2

0

2

2

0

2

2
2

exp

exp
2

1

exp

     

      (29) 

Since the method of reducing to a tabulated 

function is the same for both the integrals on the 

right side of equation (27) only first term is 

considered. Let 





   adding and subtracting 

we get 
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2
2 expe a da

a






       
  
    

(30) 

The integral can be expressed as 

 































































 





 daa

aa
edeI

2

2

2

0

2

2

1 exp1exp

2
2 expe a da

a




       
  
                                 

(31) 

Further, let 







 a

a


 in the first term of the 

above equation, then 
2

22 2 exp
1

2

I e e d e a da
a

 
  

             
    

  

    (32) 

Similarly, the second integral of equation (27) 

reduces to  

 

























































 
daa

a
edaa

a
eI

2

2

2

2

2 expexp

 
    (33) 

Again substituting a
a




 
   

 
in to the first 

term, then the above equation reduces to 










































 
 daa

a
edeeI

2

22

2 exp
2

 
     (34) 

Noting that 

 
































































daa
a

daa
a

2exp2exp

22

       (35) 

Substituting this in to equation (27) gives 
2 22 2

2

I e e d e e d
   

  

    
 

       (36)      

Equation (26) can be expressed as 

 
22 2 212 2 20, exp

4 2 2

C w t
z t e e e d e e d

D

     
    

                
         

       

(37) 

However, by definition 































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Writing equation (37) in terms of error function, 

we get 

 
2

2 20, exp
2 4

C t
z t e erfc e erfc

D

    
 
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                                                             (40) 

Substituting the value of  ,z t  is equation 

then the solution reduces to 

1 2 2exp
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                                                                               (41)     

 

Resubstituting the value of   and   gives 

0
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(42)

  

 (42) 

 

 When the boundaries are 

symmetrical the solution of the problem is given 

by the first term of the equation. The second term 

in the equation is this due to the asymmetric 

boundary imposed in a general problem. 

However, it should be noted that if a point a 

great distance away from the source is 

considered, then it is possible to approximate the 

boundary conditions by  ,
0

C t C  , which 

leads to a symmetrical solution. 

Mathematical models have been developed for 

predicting the possible concentration of a given 

dissolved substance in steady unidirectional 

seepage flows through semi-infinite, 

homogeneous, and isotropic porous media 

subject to source concentrations that vary 

exponentially with time. 

 

3 DISCUSSION OF RESULTS AND  
       CONCLUSION 

 

 The water eventually enters the 

groundwater storage basin (aquifer)- a source for 

potable water. During the passage of water 

through the soil, the pollutants are mixed, 

dispersed and diffused through the flowing flux 

and led to an intense effort to develop more 

accurate and economical models for predicting 
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solute transport and fate, often from solute 

sources that exist in the unsaturated soil zone. 

 The mixing takes place in the soil 

medium by two processes, viz., molecular 

diffusion and dispersion. Molecular diffusion is a 

physical process, which depends upon the 

kinetic properties of the fluid particles and cause 

mixing at the contact front between the two 

fluids. Dispersion, however, is defined as 

mechanical mixing process caused by the 

tortuous path followed by the fluid flowing in 

the geometrically complex interconnections of 

the flow channels and by the variations in 

equations solute transport are solved analytically 

and numerically. An analytical solution for one-

dimensional model is obtained using Laplace 

transformation techniques. 

 To estimate the magnitude of the 

hazard posed by some of these chemicals, it is 

important to investigate the processes that 

control their movement from the soil surface 

through the root zone down to the groundwater 

table. At present, major thrust on the transport of 

contaminant and research is directed towards the 

definition and qualification of the process 

governing the behaviour of pollutants in sub 

surface environment, coupled with the 

development of mathematical models that 

integrate process descriptions with the pollutant 

properties and site characteristics. 

 The main limitations of the analytical 

method are, that the applicability is for relatively 

simple problems. The geometry of the problem 

should be regular. The properties of the  soil in 

the region considered must be homogeneous or 

at least homogeneous in the sub region. The 

analytical method is somewhat more flexible 

than the standard form of other methods for one-

dimensional transport model. 

         From the equation (42), 
0C

C  was 

numerically computed using 'Mathematica' 

software. With an increase in most of the 

contaminants get absorbed by the solid surface 

and thereby retarding the movements of the 

contaminants as evident from the graphs. Most 

of the contaminants are attenuated in the 

unsaturated zone itself and thus the threat or 

groundwater being contaminated is minimized.  

 we conclude that the solute transport 

in semi-infinite homogeneous porous media is 

modelled analytically for one-dimensional flow 

assuming linear retardation, a zero order 

sink/source term, a first-order production/decay 

term, and using first and third-type boundary 

conditions at the inlet. The governing partial 

differential equation is solved in a 

straightforward manner for general inlet solute 

distributions by applying Laplace transform with 

respect to z and t. 
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